Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study

Authors

  • A. Agah Department of Mining Engineering, Arak University of Technology, Arak, Iran.
  • H. Fattahi Department of Mining Engineering, Arak University of Technology, Arak, Iran
Abstract:

Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of metal concentrations in the Shur River, resulting from ARD at the Sarcheshmeh porphyry copper deposit, southeast Iran. Concentrations of Cu, Fe, Mn and Zn are predicted using pH, sulphate (SO4) and magnesium (Mg) concentrations in the Shur River as input to the MANFIS. Three MANFIS models were implemented, Grid Partitioning (GP), the Subtractive Clustering Method (SCM) and the Fuzzy C-Means Clustering Method (FCM).A comparison was made between these three models and the results show the superiority of the MANFIS-SCM model. The results obtained indicate that the MANFIS-SCM model has potentialfor estimation of the metals with high a degree of accuracy and robustness.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Implementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters

Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parame...

full text

Prediction of Weld Strength in Resistance Spot Welded Samples by Adaptive Neuro-Fuzzy Inference System (ANFIS)

Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded s...

full text

Prediction of Weld Strength in Resistance Spot Welded Samples by Adaptive Neuro-Fuzzy Inference System (ANFIS)

Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded s...

full text

Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system

Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...

full text

Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system

Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...

full text

Adaptive Neuro-Fuzzy Inference System Model for Technological Parameters Prediction

Preliminary note The main goal of each technologist is the prediction of technological parameters by fulfilling the set design and technological demands. The work of the technologist is made easier by acquired knowledge and previous experience. A plan of input-output data was made by using the hybrid system of modelling ANFIS (Adaptive Neuro-Fuzzy Inference System) based on the results of seam ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  121- 132

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023